839

A Highly Efficient Copper(II) Complex catalysed Hydrolysis of Methyl Acetate at pH 7.0 and 25 °C

Jik Chin* and Vrej Jubian

Department of Chemistry, McGill University, Canada, H3A 2K6

The turnover time for $[(2,2'-dipyridylamine)Cu(OH_2)_2]^{2+}$ (1 mm) catalysed hydrolysis of methyl acetate (1 m) is 23 min at pH 7, 25 °C.

Successful catalysed hydrolysis of activated esters is no guarantee that the same catalyst will hydrolyse unactivated esters.¹ We recently reported that a 10 mm solution of (1) gives a six-fold rate enhancement for methyl trifluoroacetate hydrolysis but no rate enhancement for methyl acetate

hydrolysis.² Indeed, true catalytic hydrolysis of unactivated esters under mild conditions has only been obtained with real enzymes despite enormous efforts to design efficient artificial esterases.^{3,4} Here we report on efficient catalytic hydrolysis of methyl acetate using a simple Cu^{II} complex (2).

A solution of (2) was standardised by titration with standard NaOH solution. The pK_a of the copper co-ordinated water molecule is 7.2 at 25 °C. Catalysed hydrolysis of methyl acetate (1 M) with (2) (0.3 to 1 mM) was monitored by the pH stat method.† The pH of the reaction solution was maintained with a Radiometer PHM63 pH meter equipped with a Radiometer RTS 822 automatic titrator. The catalytic turnover‡ time is 23 min at pH 7.0, 25 °C (Figure 1).

Based on the pK_a of the copper co-ordinated water molecule and the pH-rate profile (Figure 2), we propose that the mechanism of catalysed hydrolysis of methyl acetate using (2) involves co-ordination of the ester to the copper followed by intramolecular metal hydroxide attack on the co-ordinated ester (Scheme 1).⁵ Since Cu^{II} is substitutionally labile, either formation or breakdown of the tetrahedral intermediate is the rate-determining step (k_2). The rate of acetic acid production is given by $k_{obs}[(2)]_T$ [ester] where $[(2)]_T$ is the total catalyst concentration and k_{obs} is given by equation (1). The pH-rate profile (Figure 2) was fitted according to equation (1) (Scheme 1).§ Under our experimental conditions, mono-aquo complexes such as (1) or (3) do not catalyse the hydrolysis of methyl acetate to any observable extent.

$$k_{\rm obs} = k_2 K_1 [K_a / (K_a + [\rm H^+])]$$
(1)

We chose to use 2,2'-dipyridylamine for its strong affinity towards Cu^{II}. The ligand binds Cu^{II} more tightly ($K = 1.15 \times 10^8 \text{ mol}^{-1} \text{ dm}^3$)⁶ than it binds H⁺ ($K = 1.38 \times 10^7 \text{ mol}^{-1} \text{ dm}^3$).⁶ Consequently, the metal ion does not dissociate from 2,2'-dipyridylamine over a wide range of the solution pH, including the p K_a region for the copper-bound water molecule.

The second order rate constants (k_{obs}) for catalysed hydrolysis of methyl acetate and *p*-nitrophenyl acetate using

[†] Methanol production was confirmed by ¹H n.m.r.

‡ At 1 mm catalyst concentration, one catalytic turnover every 23 min translates to a reaction rate of 7.2×10^{-7} mol⁻¹ dm³ acetic acid produced per second $[10^{-3}/(23 \times 60)]$. The rate constants were reproducible to within 3%.

§ A non-linear least square curve fitting program was used to fit the data ($K_a = 2.8 \times 10^{-7}$, $K_1k_2 = 1.0 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$). The K_a value obtained through potentiometric titration (6.3×10^{-8}) is more reliable than the one obtained kinetically.

(2) are 7.2×10^{-4} and 1.6×10^{-1} mol⁻¹ dm³ s⁻¹ respectively (pH 7.0, 25 °C). The rates for methyl acetate⁷ and *p*-nitrophenyl acetate⁸ hydrolyses with water are 3×10^{-10} and 6×10^{-7} s⁻¹ respectively. Therefore, (2) gives a greater rate acceleration for methyl acetate hydrolysis than for *p*-nitrophenyl acetate hydrolysis. Simple catalysts that are highly efficient at hydrolysing unactivated esters are not necessarily efficient at hydrolysing unactivated esters. For example, (1), (3) or imidazole gives a much greater rate acceleration for *p*-nitrophenyl acetate hydrolysis than for methyl acetate hydrolysis.¹

The equilibrium constant $(K_1, \text{ Scheme 1})$ for complexation of methyl acetate to the copper complex cannot be measured directly. However K_1 can be approximated as follows. There is a linear free energy relationship between the basicity of the ligands (L) and the equilibrium constant for complexation of L to aqueous Cu^{II} [equation (2)],⁹ where $K = [(H_2O)_5(Cu)L]^{2+/2}$ $[(Cu)(H_2O)_6]^{2+}[L]$ and pK_a is the acid dissociation constant for the conjugate acid of L. The pK_a of protonated methyl acetate is about $-6.0.^{10}$ Therefore, the equilibrium constant for binding methyl acetate to aqueous Cu^{II} should be about 2.6 \times 10⁻³ mol⁻¹ dm³ [equation (2)]. This is an extended extrapolation considering that equation (2) is based on a series of substituted pyridines. However, log K for $L = H_2O$ calculated from equation (2) $\log K = 0.45(-1.72 - 7) + 3.26$ = -0.66 is in excellent agreement with what it should be [log $K = \log (6/55) = -0.96$]. Assuming that the affinity of methyl

Figure 1. Catalysed hydrolysis of methyl acetate (1 м) using (**2**) (1 mм) at pH 7.0, 25 °C.

Figure 2. pH-Rate profile for (2) (1 mM) catalysed hydrolysis of methyl acetate (1 M) at 25 °C.

acetate for aqueous copper and for (2) are comparable, k_2 (3.8 $\times 10^{-1}$ s⁻¹, half-life = 2 s) is 10⁹ times greater than the water rate for free methyl acetate hydrolysis.⁷ This is a spectacular rate acceleration for such a simple catalyst. Indeed, the k_2 value is comparable to the k_{cat} values for chymotrypsin catalysed hydrolysis of esters¹¹ (5 \times 10⁻¹ s⁻¹). However, nature's most efficient esterase that hydrolyses the neuro-transmitter, acetyl choline, is in a league by itself (acetyl choline esterase: $k_{cat} = 3 \times 10^4$ s⁻¹).¹²

$$\log K = 0.45 \,(\mathrm{p}K_{\mathrm{a}} - 7) + 3.26 \tag{2}$$

In conclusion, we have shown for the first time that Cu¹¹ can be rationally activated to catalyse the hydrolysis of a simple, unactivated ester with great efficiency.¶

¶ Detailed mechanistic analysis will be reported later in a full paper.

Financial support of this research by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Received, 13th January 1989, Com. 9/00239A

References

- W. P. Jencks, J. Am. Chem. Soc., 1964, 86, 837; F. M. Menger and M. Ladika, *ibid.*, 1987, 109, 3145.
- 2 J. Chin and X. Zou, J. Am. Chem. Soc., 1984, 106, 3687.
- 3 J-M. Lehn and C. Sirlin, J. Chem. Soc., Chem. Commun., 1978, 949; A. J. Kirby and P. W. Lancaster, J. Chem. Soc., Perkin Trans. 2, 1972, 1206; D. J. Cram, P. Y. Lam, and S. P. Ho, J. Am. Chem. Soc., 1986, 108, 839; R. Breslow, G. Trainor, and A. Ueno, ibid., 1983, 105, 2739; D. A. Buckingham, D. M. Foster, and A. M. Sargeson, ibid., 1957, 79, 1889.
- 4 See also text books of organic, inorganic, bioinorganic, and bio-organic chemistry: A. Fersht, 'Enzyme Structure and Mechanism,' Freeman, New York, 1985, p. 67; M. N. Hughes, 'The Inorganic Chemistry of Biological Processes,' Wiley, Chichester, 1981, p. 89; M. L. Bender, R. J. Bergeron, and M. Komiyama, 'The Bioorganic Chemistry of Enzymatic Catalysis,' Wiley, New York, 1984, p. 196; J. W. Moore and R. G. Pearson, 'Kinetics and Mechanism,' Wiley, New York, 1981, p. 339; H. Dugas and C. Penny, 'Bioorganic Chemistry,' Springer-Verlag, New York, Ch. 5 and 6.
- 5 For similar mechanisms on related reactions see J. Chin, M. Banaszczyk, and V. Jubian, J. Chem. Soc., Chem. Commun., 1988, 735; J. Chin, M. Banaszczyk, V. Jubian, and X. Zou, J. Am. Chem. Soc., 1989, 111, in the press; R. L. Gustafson and A. E. Martell, J. Am. Chem. Soc., 1962, 84, 2309.
- 6 G. Anderegg, Helv. Chim. Acta, 1971, 54, 509.
- 7 J. P. Gurthrie, J. Am. Chem. Soc., 1973, 95, 6999.
- W. P. Jencks and J. Carriuolo, J. Am. Chem. Soc., 1960, 82, 1778.
 M. S. Sun and D. G. Brewer, Can. J. Chem., 1967, 45, 2729; J. Hine, 'Structural Effects on Equilibria in Organic Chemistry,' Wiley, New York, 1975, p. 244.
- 10 R. A. Cox and K. Yates, J. Am. Chem. Soc., 1978, 100, 3861.
- 11 C. Walsh, 'Enzymatic Reaction Mechanisms,' Freeman, San Francisco, 1979, p. 79.
- 12 L. Stryer, 'Biochemistry,' Freeman, New York, 1988, p. 79.